ENRX I What is induction heating
ENRX I What is induction heating
The induction coil. What it is.
For more information, please visit Hitfar.
The induction coil (also known as 'inductor', or 'coil'), is one of the most important components in an induction heating system. It is also one of the most neglected and misunderstood.The problem is that too many people see the coil as little more than a copper tube through which cooling water and an alternating current are fed. But nothing could be further from the truth. In fact, a correctly designed and professionally made coil has a decisive impact in several areas.
Correct process outcomes
The heating patterns, temperatures and heat penetration depths achieved during an induction heating cycle are directly and profoundly influenced by the coil's physical characteristics. A poorly designed or manufactured coil yields poor results.
Cost control
A professionally designed and manufactured coil that is properly maintained has a much longer and more productive working life than its amateurish counter parts. Also, a correctly built and maintained coil helps minimize waste.
For more information, please visit industrial induction heating machine.
Overall system efficiency
ENRX induction heating systems are designed to operate with ENRX coils. Using the correct coils means significant long-term savings.
A crash course in coils
Designing and making induction coils is not easy. Here are just three of the many challenges that need to be overcome in order to make safe, efficient coils.
Through-flow rate
It is critical to achieve adequate flow of cooling water through the coil. This is especially true with high-power density coils, as low through-flow results in insufficient thermal transference. A booster pump may also be needed to maintain the desired flow. Good designers specify a purity level for the water, in order to minimize corrosion on the inside of the coil.
Magnetic flux concentrators
Concentrators focus the current in the coil area facing the workpiece. Without them, much of the magnetic flux may propagate around the coil. This flux could engulf adjacent conductive components. But, when concentrated, the flux is restricted to precise areas of the workpiece. Concentrators are made from laminations, or from pure ferrites and ferrite- or iron-based powders. Each material has its own pros and cons.
- Laminations have the highest flux densities and magnetic permeability, and are less expensive than iron- and ferrite-based powders. Laminations are however stamped to a few standardized sizes and are therefore less flexible. They are also labour intensive to mount.
- Pure ferrites can provide outstanding magnetic permeability. But they suffer from low saturation flux density, and their brittleness makes them difficult to machine.
- Iron powders are easy to shape, offer high flux densities, and are easy to shape. However, care must be taken to protect against overheating, as internal losses or heat transfer from the heated workpiece mean such powders have a relatively low working temperature.
Impedance matching
It is necessary to achieve the correct impedance matching between the coil and the power source in order to use the latter's full power. The designer must also consider that coils need five to ten times as much reactive as active power.
For more 5 kg tilting platinum melting furnaceinformation, please contact us. We will provide professional answers.
Comments
0