Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

What Are the Advantages of Flux Cored Welding Wire?

Author: GE

Jun. 30, 2025

38 0 0

Tags: Hardware

Solid Wire Versus Flux-Cored Wire: When to Use Them and Why

Comparing the advantages of flux cored vs. MIG

MIG welding and flux-cored welding possess different characteristics that welders must evaluate when selecting which process to use. To achieve the best results, consider the following factors: thickness of the material, proper shielding gas, wire feed speed and voltage settings, location of the jobsite, and weld appearance.

If you want to learn more, please visit our website Jinertai.

There is no one-size-fits-all welding solution, and all of the above variables will affect wire selection. This article will help the novice or occasional welders understand the basics of solid and flux-cored wire and how to maximize their advantages.

Solid wire/MIG basics

MIG power sources use a continuous solid wire electrode for filler metal and require a shielding gas delivered from a pressurized gas bottle. Mild steel solid wires are usually plated with copper to prevent oxidation, aid in electrical conductivity and help increase the life of the welding contact tip. The shielding gas protects the molten weld pool from contaminants present in the surrounding atmosphere. The most common shielding gas combination is 75% argon and 25% carbon dioxide. While welding outdoors, welders should use caution and prevent wind from blowing the shielding gas coverage away from the arc. Windshields may need to be used.

Flux-cored wire basics

There are two types of flux-cored wires — gas shielded and self shielded. Gas-shielded flux-cored wires require external shielding gas, and the slag is easy to remove. Consider using gas-shielded flux-cored wires when welding on thicker metals or in out-of-position applications. Gas-shielded flux-cored wires have a flux coating that solidifies more quickly than the molten weld material. As a result, it creates a shelf to hold the molten pool when welding overhead or vertically up. Self-shielding flux-cored wire does not require external shielding gas because the weld pool is protected by gas generated when flux from the wire is burned. As a result, self-shielding flux-cored wire is more portable because it does not require an external gas tank.

What to consider when choosing solid or flux-cored wire

Appearance

Many welders believe that weld appearance is an important factor. When working on materials less than 3/16-inch thick down to thin sheet metal (24 gauge), solid wire will produce a clean looking weld. For example, a short-circuit transfer with .030-inch solid wire set at 18-19 volts with 160-170 amps and using 75% argon and 25% carbon dioxide shielding gas will usually produce little spatter, create a smaller heat-affected area and reduce chances of burn-through. As a result, many automotive enthusiasts who specialize in bodywork or those who work with thinner applications prefer solid wire.

Location

The welder must also consider the location of the jobsite when choosing between solid and flux-cored wire. In environments such as windy locations, solid wire or gas-shielded flux-cored wire are more difficult to use because exposing the shielding gas to wind can compromise the weld integrity. Typically, the loss of shielding gas will produce porosity visible in the weld bead.

On the other hand, self-shielded flux-cored wire is ideal for welding outdoors or in windy conditions. The welder does not have to set up windshields to protect the shielding gases because the shielding gas is generated from the burning flux. Since self-shielded flux-cored wire does not require external shielding gas, it is also more portable than solid wire. This portability is ideal in agricultural applications where field equipment can break down far from the shop. If you are welding thicker metals (16 gauge and above), self-shielded flux-cored wire also provides excellent penetration.

Thickness, type of application and parameter settings

Many novice welders attempt to use a one-size-fits-all wire and shielding gas combination for multiple applications. The most common wire and gas combinations (for solid wire) are .035-inch- diameter wire used with a 75% argon and 25% carbon dioxide shielding gas. When welding thicker material, however, consider the welding power source output, as well as welding wire diameter. If using a .035-inch wire for thicker materials, and the power source is plugged into a 115-volt circuit, the resulting amperage output may not be sufficient to make quality welds. This increases the risk of cold lap or lack of fusion.

Attempting to use too small of a solid wire for thicker applications (such as on A-frames of an automobile) increases the chance of lower penetration in the root and could require more than one welding pass. Misapplication of the solid wire (even though strong enough) may also not provide adequate penetration on thicker material.

Although more expensive than solid wire, flux-cored wire could help you gain productivity. Flux-cored wire typically has the ability to weld dirtier materials that may have higher levels of rust, mill scale or oil. Although cleaning is always the proper method of preparing the steel, flux-cored wires contain de-oxidizing elements that trap these contaminants in the weld pool and hold them in the slag coverage, typically preventing the associated weld problems found when welding dirtier steels. When compared to solid wire, flux-cored wire also increases penetration on the sidewalls and offers the advantage of better deposition rates (the amount of weld metal deposited in a given time period, measured in pounds per hour). Although the welder is initially spending more for flux-cored wire, the savings are realized in the decreased production time.

Which is better, solid wire or flux-cored wire?

Neither wire is superior to the other. They simply have different properties that work better on certain applications. As far as performance is concerned, both wire types produce sound welds with good weld bead appearances when applied correctly and used within the proper parameter settings. Solid wire provides deep penetration in the root and usually has little spatter. Flux-cored wire has a larger ball-type transfer and produces low spatter levels. In addition, flux-cored wire produces a rounder penetration profile with excellent sidewall fusion.

As far as user appeal, both solid wire and flux-cored wire are relatively easy to use. This makes them ideal for novice and occasional welders working in automotive, farming and home hobby applications. Welders may prefer solid wire on thinner applications because there is no slag to remove, it is ready to paint and the weld beads may be more aesthetically pleasing.

A final word on flux cored vs. MIG

Most important, remember not to fall into the one-size-fits-all mindset. Solid wire, self-shielded flux-cored wire and gas-shielded flux-cored wire all work well — provided they are applied correctly. The type of wire you choose will be contingent upon the location of the jobsite, thickness of the application, proper shielding gas combination and the type of equipment available. You should always clean the workpiece before welding to ensure optimum weld quality and prevent impurities from becoming trapped in the weld bead. To achieve the best possible results, be willing to make adjustments based on the jobsite variables and consider having both solid and flux-cored wire available.

10 Main Flux Cored Arc Welding Advantages and Disadvantages

Flux Cored Arc Welding (FCAW) is an arc welding technique that involves creating an arc between a continuous tubular filler metal electrode and the weld pool.

Flux-cored arc welding (FCAW or FCA) is a type of semi-automatic or automatic arc welding. A continuously-fed consumable tubular electrode carrying a flux and a constant-voltage or, less typically, a constant-current welding power source are required for FCAW.

The approach involves shielding gas generated by a flux enclosed within the tubular electrode (a trade name is inner-shield), with or without additional shielding from an outside supplied gas.

Sometimes an externally provided shielding gas is utilized, but more often than not, the flux itself is depended on to generate the necessary protection from the atmosphere, creating both gaseous and liquid slag to protect the weld.

Flux core welding is a versatile method of welding that also super popular and versatile. I wrote this guide describing in full detail the pros and cons of flux core welding. This guide should also help you decide whether flux core welding is right for you, how to get started, and what to expect when starting up. So what are the pros and cons of flux core welding?

Several pros to flux core welding include portability, ease of use, versatility, usability outdoors, and the ability to weld through rust.  The cons of flux core welding include the cost of the electrodes, the appearance of the weld bead, spatter, and slag inclusions to name a couple.

Is Flux Core Welding Any Good?
Flux Core Welding, often abbreviated as FCAW, involves the use of a welding wire that is similar in many ways to Metal Inert Gas (MIG) welding except for the fact it includes a flux-cored compound within the wire that has the capability to remove the need for shielding gas.

As for the question of whether this welding method is any good, the answer is yes, provided that the weld bead is being laid down in the recommended circumstances, usually on thicker metals as will be discussed later in this article.

The Flux-cored welder is the field worker’s best friend because they are easy to move from site to site. They are also easy and straight-forward to operate when compared to stick welding. These machines can plug into the standard 120V power system in your home. Since a shielding gas is not needed, you can also use this method to weld in just about any type of weather.

As will also be discussed in further detail later, this welder is also one of the best systems for welding galvanized steel. This is because MIG welding is known for being nearly impossible to weld galvanized steel with because of issues with porosity.

One of the few downsides to this technology is the effort it takes to clean up the slag that is a by-product of the welding process. Fortunately, there are ways to mitigate these complaints that will be discussed in further detail below.

Pros of Flux Core Welding
There are several advantages to using flux core welding over other welding types, such as MIG welding. Learning flux core welding will provide you with the opportunity to weld a variety of materials both indoors and outdoors.

Flux Core Welding Can Easily Be Done Outdoors

Shielding gas is of utmost importance in Metal Inert Gas (MIG) Welding in order to keep the molten weld pool from oxygen, nitrogen and hydrogen in the atmosphere. If the weld pool reacts with these elements, it will become subject to failure from porosity.

Other reasons why you need to use shielding gases when welding includes the need to:

  • Prevent excessive splatter
  • Keep the arc stable
  • Control the weld penetration into the base metal

While the solid wires used in MIG welding require shielding gases, flux core wires do not require the use of shielding gases. The mechanics behind this capability will be discussed later in further detail later in this article.

The upshot of this is that flux core wires are popular amongst those who frequently have to repair metal equipment outdoors. Flux core welding is popular at construction sites, in shipyards and in the farm field.

Cost & Energy Savings

Flux-cored wires will cost at least a little more than a solid wire of the same size. You can see this by comparing the prices of the same-sized wire online.

This is not always apparent because there are many more factors to consider than whether or not the wire requires a shielding gas. Wires of the same size may serve different uses depending upon their chemical composition. There are wires made of premium materials that will also cost more.

Still, it has been suggested that you can save quite a bit of money by making the switch to gasless flux core wires, if you haven’t done so already. You will begin to really notice the cost savings once you become fully operational.

Depending upon the application, flux core wires can lay down a weld bead at a faster travel speed and with increased deposition rates. 

flux core electrode is capable of depositing up to 25 pounds of wire per hour. A MIG electrode, deposits 8 pounds of wire per hour when it is performing at maximum efficiency.

This affects your operating costs because you may have to consume more energy to deposit a pound of solid wire than you would with a flux core wire. Energy savings are perhaps most pronounced when you are welding in position and when you are welding outdoors.

Are you interested in learning more about Flux Cored Welding Wire? Contact us today to secure an expert consultation!

Recommended article:
The Best Places to Buy Hastelloy Wire Mesh Online and In-Store

Ability to Weld Rusty Materials

You will find that flux core welding electrodes are much less fussy than solid wire electrodes when it comes to being able to weld metals that have become rusted or otherwise dirtied.

Gas-shielded electrodes usually only perform adequately on base metals that are clean. The presence of extensive rusting and milling is a death-knell of sorts to weld quality. This is because gas-welding through such contaminants can contribute to excess porosity in the weld bead, enhancing the risk of this weld failing.

Self-shielding flux electrodes, on the other hand, can effectively weld through rust and still produce a quality weld bead. A rusty or scaled surface will not contaminate the weld because the flux contained within the wire is more forgiving of the base metal than a solid wire used in conjunction with a shielding gas would be.

Flux Core Welding Easy to Learn

Flux core welding holds a reputation for being easier to learn. 

flux core welding is easier to learn than Stick Welding and TIG Welding. The skill level required to master Flux Core Welding is equivalent to that of MIG Welding.

Flux Core Welding/MIG Welding Machines Are Versatile

You can use the same small welding machine to perform both MIG and flux core welding. The machine can run off 115V electricity that you can get from your home and this welding machine is diverse in the number of purposes that it can serve.

Flux core welding can be used to weld all of the most common metals:

  • Carbon steel
  • Stainless steel
  • Aluminum

This makes the flux core welder ideal for home shops and farms. You also don’t have to worry about hauling around a box of electrodes, since the welding gun is fed by a continuous loop of welding wire. The spools vary in size, with the largest of spoils being large enough to fit in a barrel.

Portability

Once you drop the gas tanks, the MIG welding machines can be moved from one location to the next with ease. MIG welding machines will typically weigh just under 40 pounds if you are going with the welders marketed towards DIYers.

Once you put together all your equipment, including the spool of flux wire, it won’t weigh much more than that. And without having to lug around cylinders of gas, you can easily transport the machine to make emergency repairs on construction or farming equipment.

Cons of Flux Core Welding

There are some drawbacks to flux core welding. For one thing, the electrode itself is more expensive than a solid wire electrode. You will also find that it  produces more slag at the weld zone than most other electrodes do.

  • General Repairs
  • Pipelines
  • Shipbuilding
  • Manufacturing
  • Underwater welding

General Repairs

Flux core welding wires allow for greater penetration of base metals, as compared to other welding techniques. It also allows for greater deposition rates.

FCAW welding, whether self-shielded or gas-shielded, is really best-suited for welding thick materials that are at least 20-gauge in thickness. Examples of such materials include stainless steel, carbon steel, low-alloy steels, cast iron, and high nickel alloys.

What Is the Best All-Around Flux Core Welding Wire?

One of the most popular flux core welding wires is the E71T-GS. This is a self-shielding flux core wire that can be used in all positions.  It is commonly utilized in auto body repair, farming equipment, tanks, and non-structural frames.

This wire is suitable for welding:

  • Thin carbon steels and carbon-manganese steel
  • Galvanized steels
  • General Field Repairs
  • Lap & Fillet Welds on thin gauge materials

he E71T-GS produces a low amount of splatter and it is easy to remove slag from the welded piece. It is tailor-made for routine repairs due to the low penetration of its arc into the base metal. The self-shielding characteristics make it an ideal welding wire for performing field repairs on construction and farming equipment.

This welding wire is also a favorite amongst home workshop welders because it handles like a dream on the 110-volt welding machines that are so often the centerpieces of DIY welding operations.

A Flux Core Wire Well-Suited for Stainless Steel

MIG welding is a welding technique that is commonly used to weld stainless steel. The ER 308L series wire is the most commonly used to weld most stainless steels. High-grade stainless steels are welded with the ER 316L series welding wires and the ER 309L series is used for the welding of stainless steel to other pieces of steel.

Generally, gas-shielded MIG welding wires are used to weld stainless steel pieces with mixtures of Argon and Carbon Dioxide used in the shielding gas. You may also find self-shielding flux core wires useful for welding stainless steel pieces.

The Blue Demon 308LFC-O flux core wire presents welders with the opportunity to weld stainless steel pieces without having to use any shielding gas. It can be used in the flat and horizontal welding positions and is compatible with DC+ (direct current positive).

It can be used for welding 300 series stainless steel up to 308L stainless steel. The 300 series stainless steels are commonly used in the automotive and construction industries. The 308LFC-O flux core wire can also be used to weld 430 series stainless steel.

Flux Core Can Weld Galvanized Steel

Flux core wires are capable of being used to weld galvanized steel pieces, while your typical solid MIG wires cannot do so. The ingredients in flux core wires enable them to successfully weld galvanized steel.

If you are planning on welding galvanized steel, you will want to pay special attention to the specific flux core wire you choose. Some flux core wire types are specifically designed for being compatible with galvanized steel.

The E71T-11 is the recommended flux core wire for welding galvanized steel pieces. It also works well with thin-gauge mild steels.

Is MIG Welding Better Than Flux Core?

Flux core welding is a lot more convenient than MIG welding because you do not need to use a shielding gas to keep the weld bead stable. Flux core welding is surely the preferred method when welding outdoors. There are circumstances in which MIG welding is the more suitable method.

One method is not necessarily better than the other but there are circumstances in which you may find one solid wire MIG welding more suitable than flux core welding.

Circumstances in which MIG welding may be the way to go:

  • If the metal that you are welding is less than 3/16” in thickness
  • If creating a weld with a clean finish is of importance to you
  • You are looking to lay down a weld bead that you will be able to easily paint over without having to remove excess slag

It can be nearly impossible to use MIG welding wires to weld galvanized steel. 

You will find that flux-cored wires are significantly more effective for welding galvanized steel. Nearly every piece of metal that was designed to be kept outdoors, including chain link fence, is galvanized.

Flux core wires are able to successfully weld galvanized pieces because of the chemical composition of the flux. Scavengers and fluxing agents are able to refine the weld.  They help to prevent the porosity and cracking issues that are observed when a piece of galvanized metal is welded using a MIG wire.

Is TIG Welding Better Than Flux Core?

TIG stands for Tungsten Inert Gas, a welding process that is officially called Gas Tungsten Arc Welding (GTAW). The tungsten electrode used in the process is a non-consumable electrode. 

Like MIG welding, this is a welding technique that requires the use of shielding gas in order to keep the weld pool from deteriorating due to porosity issues. Argon is the inert gas that is often used with TIG Welding.

The fact that the tungsten electrode is non-consumable allows the welder to bond metal pieces together without having to use a filler metal, even though filler metals are often used anyway. TIG welding can be used in metal-to-metal welds and results in a cleaner weld zone.

One caveat to TIG welding is that it requires more refined welding skills than MIG and flux core welding. You must take care to not overheat the weld as it can result in stress cracks and other similar deficiencies in the finished weld.

TIG welding is also not very effective at welding thicker metal pieces. If you are welding a piece that is approximately 3/16” thick or thicker, then flux core welding will be your best bet. Tig welding was invented to weld thin metals for applications like aerospace. It is fantastic for some metals and particular thicknesses, but not all. It also works best when you are able to back purge when your TIG welding job. 

All in all, flux core welding is a unique, simple to learn, versatile welding technique that can work where other techniques cannot. If you work outside primarily, and in the positions mentioned above, this would be worth checking out for welding jobs around the house or farm. Thanks for reading and keep stacking dimes!

For more information, please visit Welding Electrode China.

Comments

0

0/2000